A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst
نویسندگان
چکیده
Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.
منابع مشابه
Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst
Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence...
متن کاملHighly efficient catalyst for removal of heavy metal ions modified by a novel Schiff base ligand
An alomina-based nano adsorbent was prepared by modification of the external surface of γ-alumina (γ-Al2O3) nanoparticles with functional groups of a new Schiff base 4-[(2-hydroxy-3-methoxy-benzylidene)-amino]-5-methyl-2,4-dihydro-[1,2.4]triazole-3-thione] “L”. In order to the removal of Cr(VI) from aqueous solutions, we used the reaction of the sodium dodecyl sulfate coated nano-alumina with L...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملMechanisms of CH4, H2S and SO2 Oxidation on Precious Metal Catalysts under stagnation point flow conditions
A new methodology which combines reactor experiments and numerical modelling to derive kinetic rates of solid-gas heterogeneous reactions in a stagnation point flow reactor (SPFR) is developed and used to investigate the effects of small concentrations of H2S and SO2 on the lean catalytic combustion of methane on precious metal catalysts. The activity of polycrystalline Pt foil, then Pt, Rh and...
متن کاملIn Situ Growth of Highly Adhesive Surface Layer on Titanium Foil as Durable Counter Electrodes for Efficient Dye-sensitized Solar Cells
Counter electrodes (CEs) of dye-sensitized solar cells (DSCs) are usually fabricated by depositing catalytic materials on substrates. The poor adhesion of the catalytic material to the substrate often results in the exfoliation of catalytic materials, and then the deterioration of cell performance or even the failure of DSCs. In this study, a highly adhesive surface layer is in situ grown on th...
متن کامل